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TWO-DIMENSIONAL PROBLEMS OF BEAM FORMING

UNDER CONDITIONS OF CREEP

UDC 539.374+376I. A. Banshchikova, B. V. Gorev, and I. V. Sukhorukov

Direct and inverse problems of forming of long-length profiles with double curvature and a given angle
of twisting under conditions of creep are considered. A finite-difference scheme for the numerical
solution is proposed. Examples of solving problems with different types of external actions for a
profile with a rectangular cross section are given. Experimental and numerical data are compared for
twisting of beams with square and circular cross sections in the regime of creep at temperatures of
725 and 740◦C for St. 45 steel.

Introduction. Long-length double-curvature profiles of variable cross section (such as rectangles, T-beams,
flange beams, etc.) made of alloys hardly deformed at normal temperature are used as reinforcing elements of
sheathing of aircraft, ships, and other machines. These profile have the following typical dimensions: lengths of
several meters, wall height of 0.02–0.2 m, and wall thickness of several millimeters. One possible method of forming
these profiles from straight-line beams is consecutive deformation of their sections. Each of the sections formed is
subjected to temperature and force actions in a heat chamber. Some part of the profile is deformed under conditions
of creep, and the other part of the profile located outside the chamber is not loaded. Under these conditions, we
may assume in the first approximation that constant curvatures and a constant running angle of twisting along the
profile are specified for the deformed section. Then the independent variables are two spatial coordinates in the
plane of this section and the time. Hereinafter, the angle of twisting is understood as the angle of turning of the
profile section per unit length.

Owing to the large (by an order of magnitude) difference in the size of the cross section and the length of
the deformed section, the special feature of forming of long-length profiles is significant elastic recovery. Therefore,
the specified residual curvatures and the angle of twisting can differ significantly from the curvatures and angle of
twisting before unloading. The forming process is described by the following inverse problem: to find appropriate
force and kinematic parameters of forming for obtaining required residual curvatures and angle of twisting after
unloading and elastic recovery.

Similar inverse problems arise in forming of smooth and reinforced monolithic panels and arcs [1]. Problems
of mathematical well-posedness of some inverse problems for smooth plates were considered in [2, 3]. A numerical
solution of problems of this class by the finite-element method is given in [4]. One one-dimensional problem of
forming was studied in [5].

In the present paper, we consider the problems of modeling of forming beams of a given curvature and angle
of twisting in the regime of creep with allowance for elastic deformations. Strains and stresses are assumed to
depend on two spatial coordinates and time only. Prior to forming, the profile is in a natural nondeformed state.
The temperature is assumed to be constant during the entire time of the forming process.

1. Formulation of the Problem. In the general form, the direct problem is formulated as follows. During
the time 0 6 t < t∗ (t is the time and t∗ is a specified time of the forming process), the beam experiences specified
external force and kinematic actions. It is assumed that the actions are such that the strains do not exceed the
yield point. We have to determine the residual kinematic quantities with allowance for elastic recovery at the time
t = t∗.
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Correspondingly, the inverse problem is formulated as follows. Which external actions have to be applied to
the beam at 0 6 t < t∗ to obtain specified residual values after unloading at the time t = t∗ and elastic recovery?

From the practical point of view, inverse problems with three types of external actions are of interest.
Problem 1. At t = 0, as a result of instantaneous elastic deformation under the action of sought bending

and torque and a specified longitudinal force, the beam acquires curvatures æx0 and æy0, angle of twisting θ0, and
longitudinal strain ε0. At 0 < t < t∗, the angle of twisting, curvatures, and longitudinal strain remain fixed; in this
case, relaxation of stresses and accumulation of irreversible creep strains occur in the beam. At t = t∗, the beam is
set free of all external loads and, after elastic recovery, has to acquire specified residual curvatures æx∗∗ and æy∗∗
and angle of twisting θ∗∗.

Problem 2. At t = 0, the beam instantaneously acquires specified curvatures æx0 and æy0, angle of twisting
θ0, and longitudinal strain ε0; at 0 < t < t∗, it additionally acquires sought constant rates æ̇x, æ̇y, θ̇, and ε̇0 (the dot
indicates differentiation in time). At t = t∗, after unloading and elastic recovery, the beam has to acquire specified
residual curvatures æx∗∗ and æy∗∗ and angle of twisting θ∗∗.

Problem 3. At 0 6 t < t∗, sought bending and torque and a specified longitudinal force are applied to the
beam. At t = t∗, after unloading and elastic recovery, the beam has to acquire specified residual curvatures æx∗∗
and æy∗∗ and angle of twisting θ∗∗.

The following notation is used above: ε0(t) is the axial strain, æx(t) = −v,zz and æy(t) = u,zz are the
curvatures of the projections v(z, t) and u(z, t) of the curved axis of the beam onto the planes yz and xz, respectively,
in the Cartesian coordinate system xyz, and θ(t) is the angle of twisting.

The inverse problems 1 and 2 are solved using an iterative process similar to that described in [6]. The
iterative algorithm of solving the inverse problem of pure twisting by a constant torque (problem 3) is based on the
secant method.

The z axis of the Cartesian coordinate system is directed along the beam, and the x and y axes are in
the cross-sectional plane. The assumption that the strains and stresses are independent of the z coordinate allows
significant simplification of the system of the basic governing equations. Similar to [7, 8], the following assumptions
are made for the beam:

σx = σy = τxy = 0. (1)

Then, elastic strains are related to stresses as follows:

εex = − ν
E
σz, εey = − ν

E
σz, εez =

1
E
σz, γezx =

1
G
τzx, γezy =

1
G
τzy.

Here E is Young’s modulus, G is the shear modulus, and ν is the Poisson’s ratio. In this case, the elastic strains

εez = ε0 − æyx+ æxy, εex = −νεez, εey = −νεez, γezx = W,x − θy, γezy = W,y + θx

are compatible and correspond to the displacements

u = −ν(ε0x+ æxxy + æy(y2 − x2)/2) + æyz
2/2− θzy,

v = −ν(ε0y − æyxy + æx(y2 − x2)/2)− æxz
2/2 + θzx,

w = ε0z + æxyz − æyxz +W.

Here W (x, y, t) are the displacements along the z axis arising due to twisting.
If the creep of the material is described using the flow theory with allowance for damage accumulation in

the material [9]

ηckl =
3

2(1− ω)m
F (σi)
σi

σ0
kl, ω̇ =

Φ(σi)
(1− ω)m

, (2)

then, the total strain rates are determined by the relations

ε̇x = −νσ̇z/E − ηczz/2, ε̇y = −νσ̇z/E − ηczz/2, ε̇z = σ̇z/E + ηczz,

γ̇zx = τ̇zx/G+ ηczx, γ̇zy = τ̇zy/G+ ηczy.

Here ω(x, y, t) is the damage of the material, ηckl are the strain rates of creep, σi = (3/2)(σ0
klσ

0
kl)

1/2 is the stress
rate, and σ0

kl are the components of the stress deviator.
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Relations (2) describe a material that is incompressible under creep. If condition (1) and the condition of
elastic incompressibility of the material (ν = 1/2) are satisfied, the total strain rates are also compatible, and the
following relations are valid:

u̇ = −(1/2)(ε̇0x+ æ̇xxy + æ̇y(y2 − x2)/2) + æ̇yz
2/2− θ̇zy,

v̇ = −(1/2)(ε̇0y − æ̇yxy + æ̇x(y2 − x2)/2)− æ̇xz
2/2 + θ̇zx,

ẇ = ε̇0z + æ̇xyz − æ̇yxz + Ẇ .

In the general case of an elastically compressible material (ν 6= 1/2), we have the following relations for the
total strain rates ε̇x and ε̇y:

ε̇x = ε̇y = −ε̇z/2 + (1/2− ν)σ̇z/E.

Then, the strain rates can be incompatible because of the second term, which takes into account the elastic com-
pressibility of the material. It is assumed that the contribution of this term is insignificant in the case of developed
creep strains and stationary external loads.

The equations for the total strain rates have the form

τ̇zx/G+ ηczx = Ẇ,x − θ̇y, τ̇zy/G+ ηczy = Ẇ,y + θ̇x, σ̇z/E + ηczz = ε̇0 + æ̇xy − æ̇yx. (3)

With allowance for Eq. (1) and the fact that the stresses are independent of z, we have only one differential
equation of equilibrium left out of three, and σz,z = 0. Then, we have

τzx,x + τzy,y = 0. (4)

The stresses τzx, τzy, and σz should balance the force and external moments

N =
∫
S

σz dS, Mx =
∫
S

σzy dS, My = −
∫
S

σzx dS; (5)

Mz =
∫
S

(τzyx− τzxy) dS, (6)

where N , Mx, My, and Mz are the longitudinal force, bending, and torque. The boundary conditions on the
cross-sectional contour of the beam are

τzxn1 + τzyn2 = 0 (7)

(nk are the components of the normal to the contour).
Equations (2)–(6) with the boundary conditions (7) form an integrodifferential system with respect to

stresses, warping, and damage for Problems 1–3, and also the angle, curvatures, and tensile strain for Problem 3.
At t = 0, the creep strains εcij(x, y, 0) = 0 and ω(x, y, 0) = 0 and stresses

τzx(x, y, 0) = G(W0,x − θ0y), τzy(x, y, 0) = G(W0,y + θ0x), σz(x, y, 0) = E(ε0
0 + æ0xy − æ0yx)

are determined from the equilibrium equation (4) for Problems 1–3 and relations (5), (6) for Problem 3 with
allowance for the boundary conditions (7). Here W0 = W (x, y, 0), θ0 = θ(0), æ0x = æx(0), æ0y = æy(0), and
ε0

0 = ε0(0). For t = t∗, the conditions of elastic unloading are valid:∫
S

(τzy∗x− τzx∗y) dS = θeGD,

∫
S

σz∗ dS = εe0EJ,

∫
S

σz∗y dS = æexEJx, −
∫
S

σz∗x dS = æeyEJy,

τzx∗ = τezx + ρzx, τzy∗ = τezy + ρzy, σz∗ = σez + ρz,

θ∗ = θe + θ∗∗, æx∗ = æex + æx∗∗, æy∗ = æey + æy∗∗, ε0∗ = εe0 + ε0∗∗
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(ρ are the residual stresses after elastic unloading). The subscripts “∗,” “∗∗,” and e refer to the values at t = t∗
before unloading, residual values, and elastic recovery values; D, J , Jx, and Jy are the geometric characteristics of
the section:

D =
∫
S

[(W e
,y + x)x− (W e

,x − y)y] dS, J =
∫
S

dS, Jx =
∫
S

y2 dS, Jy =
∫
S

x2 dS.

Warping of the section W e(x, y) is proportional to the axial displacement of the cross-sectional point under elastic
twisting W = θW e and is completely determined by the cross-sectional geometry of the profile.

To solve the system of differential equations (2)–(7), we used the finite-difference method. Equations that
describe beam twisting usually reduce to one differential equation with respect to warping or the stress function
with an appropriate transformation of the boundary conditions. Then, either the Dirichlet or the Neumann problem
is solved at each time step. The values of warping or the stress function in grid nodes are used to determine the
unknown stresses and strains for the next step. To avoid additional numerical differentiation of the right sides, we
use the difference scheme

τ̇zxij
G
− Ẇi+1j − Ẇi−1j

2h1
= −ηczxij − θ̇yij ,

τ̇zyij
G
− Ẇij+1 − Ẇij−1

2h2
= −ηczyij + θ̇xij ,

τ̇zxi+1j − τ̇zxi−1j

2h1
+
τ̇zyij+1 − τ̇zxij−1

2h2
= 0,

σ̇zij
E

= −ηczij + ε̇0 + æ̇xyij − æ̇yxij , ω̇ij =
Φij(σi)

(1− ωij)m
,

where 0 < i < K, 0 < j < M , h1 = a/K, h2 = b/M , a and b are the width and length of the rectangular cross
section of the beam, and xij and yij are the coordinates of the node (i, j) of the finite-difference grid.

For the condition at the left boundary τzx = 0 for x = −a/2, we use the approximation [10]

−Ẇ2j + 4Ẇ1j − 3Ẇ0j

2h1
= θ̇y0j , 0 < j <

b

h2
.

Equations for the remaining three boundaries of the section are written in a similar manner. The matrix of
coefficients in the left side at derivatives in time for Problems 1 and 2 have a band structure. For Problem 3, Eq. (6)
is written in the form ∫

S

(Ẇ,yx− Ẇ,xy) dS +
θ̇ab(a2 + b2)

12
=
Ṁz

G
+
∫
S

(ηczyx− ηczxy) dS.

The above-described schemes are used to approximate the derivatives with respect to x and y. Simpson’s method [11]
is used for numerical integration over the cross section. Thus, one more differential equation and, hence, one more
row in the matrix of coefficients at derivatives in time are added. In this case, the matrix has no longer the band
structure. Its conversion was performed by the method of reflection, which allows one to obtain the solution with
a high accuracy and is stable to the computational error [10, pp. 265–268]. The method can be implemented both
for the matrix of the general type and for the matrix with the band structure. To solve the system of ordinary
differential equations in time, we used the fourth-order Runge–Kutta–Merson technique with an automatic choice
of the step, which significantly reduced the time needed to solve the problem [11]. The number of simultaneously
solved equations has the order N = 5×K ×M .

2. Numerical Solution. The proposed scheme was tested on a numerical solution of a linear elastic problem
of twisting a beam with a rectangular section 0.01 × 0.02 m. Young’s modulus E = 66.7 GPa and Poisson’s ratio
ν = 0.3 correspond to the VT9 alloy.

Table 1 shows the values of the torque and maximum shear stress for θ = 1.396 rad/m obtained by the
finite-difference method with section splitting into 11× 21 and 21× 41 nodes, and also the values calculated by the
formulas

Mz = k1Gθa
3b, τmax = Mz/(k2a

2b), (8)

where the values of k1 and k2 depend on the ratio b/a [8] (here k1 = 0.229 and k2 = 0.246).
For elastic twisting, on the basis of the solution given in [7] for the stress function, we obtained a solution

for stresses and warping in the form of a series, which is too cumbersome to be presented here. A comparison of
stresses and warping obtained in the form of a series and by the finite-difference method indicates a rather high
accuracy of the solution obtained by the finite-difference method.
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TABLE 1

Calculation method Mz , N ·m τmax, MPa

Numerical solution:
grid 11× 21 163.3 331.0

grid 21× 41 163.7 332.6

Solution (8) 164.0 332.8

TABLE 2

ε0 · 103 θ0, rad/m æx0, m−1

0 1.184 0.52
1 1.183 0.51
2 1.172 0.46
3 1.143 0.38
4 1.082 0.30

Fig. 1

Creep of the VT9 alloy is described by the relations

ηckl = Bσn−1
i σ0

kl/(1− ω)m, ω̇ = Cσgi /(1− ω)m. (9)

For a temperature of 550◦C, the constants in relations (9) have the following values: n = 4, g = 5, m = 10,
B = 1.1303 · 10−17 MPa−n · sec−1, C = 5.0105 · 10−20 MPa−g, and the yield point is σy = 608 MPa [13].

For Problem 1, Table 2 gives the sought initial angle of twisting θ0 and curvature æx0 necessary for obtaining
the residual values θ∗∗ = 0.523 rad/m and æx∗∗ = 0.2 m−1 for fixed tension ε0 and 0 6 t < t∗. The time of heat
fixing is t∗ = 3.6 · 104 sec.

In the calculations, the angle of twisting, curvature, and axial tension were chosen so that the maximum
value of the stress rate for 0 6 t < t∗ did not exceed the yield point σy.

Beam deformation with longitudinal tension fixed in time allows one to decrease the sought initial values of
the angle of twisting and curvature, and hence, the values of elastic recovery at t = t∗.

Twisting and bending mutually affect each other. For instance, in the case of pure twisting, one has to set
the angle of twisting θ0 = 1.232 rad/m to obtain θ∗∗ = 0.262 rad/m during the time t∗ = 3.6 · 104 sec; in the case
of twisting with bending, to reach θ∗∗ = 0.262 rad/m and æx∗∗ = 0.15 m−1 during the same time, one needs the
angle θ0 = 1.05 rad/m and æx0 = 0.62 m−1.

Figure 1 shows the numerical solution of direct problems of pure twisting for different regimes of deformation
of the beam with the cross section 0.01 × 0.02 m for t∗ = 1.08 · 104 sec. Figure 1a shows the dependence of the
torque Mz on time; the dependence of the maximum stress rate on time is plotted in Fig. 1b (the maximum stress
rate is reached in the middle of the section boundary). Curves 1–5 refer to the following regimes: linear increase in
the angle of twisting from 0 to 3.227 rad/m at 0 6 t < t∗ (curve 1), instantaneous elastic deformation at the initial
time up to the angle of twisting of 1.465 rad/m with its subsequent linear increase to 4.239 rad/m at 0 < t < t∗
(curve 2), instantaneous elastic deformation up to the angle of twisting of 0.872 rad/m with its subsequent linear
increase up to 4.047 rad/m during the time t∗ (curve 3), instantaneous elastic loading up to the angle of twisting
of 1.465 rad/m with subsequent heat fixing (at 0 < t < t∗, the angle of twisting remains unchanged, and stress
relaxation occurs) (curve 4), and twisting by a constant moment at 0 6 t < t∗ (curve 5). The following residual
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Fig. 2

TABLE 3

t∗, 103 sec θ∗, rad/m æx∗, m−1

7.2 2.936 1.35
10.8 2.742 1.25
18.0 2.529 1.14
36.0 2.283 1.02

TABLE 4

t∗, 103 sec θ̇, 10−4 rad/(m · sec) θ∗∗−, rad/m θ∗∗+, rad/m ωmax

3.6 1.744 0.363 0.368 0.01
36.0 1.744 5.757 5.943 0.09
36.0 2.617 8.691 9.022 0.13
72.0 1.744 12.037 12.401 0.15

angles were obtained for deformation regimes corresponding to curves 1–5: θ∗∗ = 1.195, 2.243, 1.987, 0.412, and
0.801 rad/m, respectively.

Figure 2 shows the dependence of the initial angle of twisting on the given residual angle (Problem 1). Curves
1–4 refer to the times of heat fixing t∗ = 1.08 · 104, 3.6 · 104, 36 · 104, and 180 · 104 sec, respectively. The dashed
curve is the asymptotic solution for t∗ →∞.

The results of the solution of Problem 2 are listed in Table 3. At t = 0, the beam is instantaneously loaded
up to the angle of twisting θ0 = 1.047 rad/m and curvature æx0 = 0.5 m−1, which increase linearly at 0 < t < t∗ up
to the sought angle θ∗ and curvature æx∗ necessary to obtain the residual angle θ∗∗ = 1.221 rad/m and curvature
æx∗∗ = 0.5 m−1.

We also studied the influence of damage on calculation results. The data for pure twisting (without bending
and tension) are given below. At t = 0, the beam is instantaneously loaded up to the angle of twisting θ0 =
1.396 rad/m; at 0 < t < t∗, the angle changes with a given velocity θ̇. Table 4 shows the residual angles after
unloading for different values of t∗ and θ̇ without allowance for damage (θ∗∗−) [m = 0 in (9)] and with allowance
for damage (θ∗∗+), and also the maximum value of the damage ωmax if it was taken into account.

It follows from the analysis of the data obtained that the damage should be taken into account in Problem 2
if the forming process is rather long.

3. Experimental Data. Twisting of Square-Section Beams. Experimental data obtained in pure twisting
by a constant torque (Problem 3) are compared with the results of the numerical solution for beams with a square
cross section and close to it. The square form of the cross section allows one to maximally reduce the influence of
warping constraint at the butt-end faces of the specimen on test results.

Figure 3 shows the specimen with cross-sectional dimensions 0.01× 0.02 m and working length l0 of about
0.07 m. It is seen that longitudinal twisting of the specimen is not uniform: it is stronger in the central part and
weaker at the ends. This character of twisting is confirmed by direct measurements by an instrumental microscope.

The open squares 1 and 2 in Fig. 4 refer to the experimental dependence of the angle of twisting θ on time
for beams of square cross section made of the St. 45 construction material (from a bar 120 mm in diameter) at
temperatures T = 725◦C (l0 = 0.051 m, a = b = 0.018 15 m, and Mz = 49.57 N ·m) and T = 740◦C (l0 = 0.0497 m,
a = 0.018 13 m, b = 0.018 61 m, and Mz = 43 N ·m), respectively. The solid curves 1 and 2 correspond to the
numerical calculations by the finite-difference method for T = 725 and 740◦C. For calculations at the temperature
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Fig. 3 Fig. 4

of 725◦C, we used the power dependence for the creep strain rates

ηckl = Bσn−1
i σ0

kl (10)

with the following constants of the material [14]: n = 5.22, B = 3.5 · 10−14 MPa−n · sec−1, E = 170 GPa, and
ν = 0.3. The constant for calculations at the temperature of 740◦C are given below.

Kachanov [15] gives the solution of the problem of twisting of a square-section beam under the assumption
of steady creep (the changes in elastic strain rates are neglected) for the power dependence of the strain rate of
creep, which was obtained by an approximate analytical method based on the principle of the minimum additional
scattering:

θ̇ = (33(n+3)/2B/a)(M/a3)nI(n). (11)

Here I(n) is the integral calculated by the Gaussian technique [in our case, I(5.22) ≈ 0.809]. The difference in
velocities calculated by formula (11) [θ̇ = 2.73·10−3 rad/(m · sec)] and by the finite-difference method [θ̇ = 2.66·10−3

rad/(m · sec)] is less than 3%.
The filled points in Fig. 4 refer to the experimental values of the angle of twisting of the continuous circular-

section beam in the case of its twisting by the torque Mz = 51.5 N · m at T = 725◦C (the beam radius is
R = 9.988 · 10−3 m; l0 = 0.0431 m). The velocity of the angle of twisting θ̇ = 2.73 · 10−3 rad/(m · sec) calculated
for this beam under the assumption of steady creep [15],

θ̇ = (
√

3B/R3n+1)(M
√

3(3 + 1/n)/(2π))n, (12)

coincides with that calculated by Eq. (11) for a square-section beam. The experimental values of θ(t) for beams
with square (open squares 1 in Fig. 4) and circular (filled points in Fig. 4) cross sections differ insignificantly. It
should be noted that good agreement of experimental data for twisting of square-section beams and experimental
data for twisting of circular-section beams is important from the viewpoint of planning the experiment (torque,
specimen size, test duration, etc.).

An analysis of formulas (11) and (12) shows that the velocity of the angle of twisting depends significantly
on the cross-sectional size: θ̇ ∼ 1/a3n+1. A 1% decrease in a for n = 5.22 leads to an increase in θ̇ approximately
by 20%.

For the calculations for T = 740◦C (solid curve 2 in Fig. 4), we used the dependence

ηkl = A(exp (ασi)− 1)σ0
kl/σi, (13)

where α = 0.125 63 MPa−1 and A = 8.0451 · 10−8 sec−1. Young’s modulus and Poisson’s ratio are the same as
those at the temperature T = 725◦C. The velocity of the angle of twisting θ̇ = 1.67 · 10−3 rad/(m · sec) obtained by
the finite-difference method is smaller than the experimental value approximately by 25%.
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Fig. 5 Fig. 6

With allowance for the scatter of experimental data obtained in determining the characteristics of creep
and the strong dependence of the calculation results on the cross-sectional size of the specimen, the agreement of
experimental and numerical data may be considered as satisfactory.

Determination of Characteristics of Creep. Lyubashevskaya and Sosnin [14] calculated the constants for the
power law of creep (10) on the basis of experimental data of scattered energy versus time in experiments on tension
and compression for the St. 45 material for T = 725◦C. It was assumed that the material behaves as an isotropic
medium without hardening, with identical properties in tension and compression.

Figure 5 shows the test results for pure tension and compression in the axial direction (filled and open points,
respectively) and tension at an angle of 45◦ to the bar axis (triangles) at constant stress and T = 725◦C. These
data confirm the isotropy of the material. The experimental curves 1–5 correspond to stresses σ = 55, 50, 44,
40, and 26 MPa. The squares refer to the experimental values of the strain rate at the characteristic point ε̂i in
twisting of continuous circular-section specimens under the action of a constant torque Mz [16]. The experimental
data obtained in twisting correspond to the stress rate at the characteristic point, equal to stress in pure tension:
σ̂i = σ = 26, 40, 44, and 50 MPa (Mz = 31.2, 42.8, 53.1, and 60.3 N · m and R = 9.975 · 10−3, 9.988 · 10−3, 0.01,
and 9.995 · 10−3 m). The length of the specimens is 0.047 m. The values at the characteristic point are marked by
hat sign.

The position of the characteristic point is determined as the coordinate of intersection of the curves corre-
sponding to elastic and steady distributions of stresses [16]. As applied to twisting of continuous circular-section
beams by a constant torque, when the creep index n is unknown, it is possible to use the coordinate of intersection
of the curves corresponding to elastic and ideally plastic distributions (R̂ = 3R/4); the accuracy is sufficient to
construct twisting diagrams. In this case, we have ε̂i = 3Rθ/4 and σ̂i =

√
3 3Mz/(2πR3).

Figure 6 shows the experimental dependences (points) of the strain rate in pure tension in the axial direction
on time for T = 740◦C. The experimental values numbered 1–5 correspond to σ = 60, 55, 50, 45, and 30 MPa.
Squares 3 and 4 in Fig. 6 refer to the strain rates at the characteristic point, which were obtained in the experiment
on twisting a continuous circular-section specimen with the stress rate at the characteristic point σ̂i = 50 and
45 MPa (Mz = 60.4 and 54.4 N ·m and R = 9.996 · 10−3 m).

The solid curves in Figs. 5 and 6 approximate the experimental data by the power dependence (10) for
T = 725◦C and the exponential dependence (13) for T = 740◦C, respectively. It follows from the data in Figs. 5
and 6 that the experimental points are grouped along a straight line for an identical stress rate σi = σ̂i, which
confirms the hypothesis of the “single curve” and the choice of the equivalent stress.

Thus, the proposed technique for modeling and calculating the parameters of beam forming under conditions
of creep on the basis of the finite-difference method finds satisfactory confirmation for the problem of determining
the torque necessary to reach a required angle of twisting for a beam whose cross section is close to a square.

The finite-difference calculation allows one to analyze the sensitivity of strain rates to changes in the geometric
dimensions of the specimen, which is important for planning and performing of experiments.

A further experimental study of twisting of beams of more complicated cross-sectional shapes (including the
case of large strains) is necessary to test the calculation method for beam forming.

This work was supported by the Russian Foundation for Fundamental Research (Grant Nos. 99-01-00551,
00-15-96180, and 00-01-96203).
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